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Abstract

In this paper, we review our works on image-based es-
timation of real size of foods for accurate food calorie es-
timation which including three existing works and two new
works: (1) “CalorieCam” which is a system to estimate real
food size based on a reference object, (2) Region segmen-
tation based food calorie estimation, (3) “AR DeepCalo-
rieCam V2” which is based on visual inertial odometry
built in the iOS ARKit library, (4) “DepthCalorieCam”
which employs stereo cameras on iPhone X/XS, and (5)
“RiceCalorieCam” which exploits rice grains as reference
objects. Especially, the last two new methods achieved 10%
or less estimation error, which was enough for robust food
calorie estimation.

1 Introduction

In food image recognition, CNN-based methods have

achieved great improvement in recent years and some

smartphone applications employ them. However, in most

of the calorie estimation, the estimated calories are just as-

sociated with the estimated food categories and these appli-

cations often require users to enter information such as size

or volume, there are problems that it is a troublesome and

subjective evaluation. Currently, no applications which can

estimate food calories automatically exist.

Although most of the image recognition tasks including

food category recognition have been almost solved due to

great progress of CNN-based image recognition methods,

fully-automatic food calorie estimation from a food photo

has still remained an unsolved problem. We think that food

calorie estimation not only helps people’s health a lots, but

also is promising as a new problem of image recognition

studies.

In this paper, we review three of our works related to

food size estimation, and propose two new methods for food

size estimation.

(1) “CalorieCam” [1] which is a reference-object-based

food calorie estimation system.

(2) Weakly-supervised segmentation based food calorie

estimation [2].

(3) “AR DeepCalorieCam V2” [3] which is a real food

size and calorie estimation system based on visual

inertial odometory implemented in iOS ARKit.

(4) “DepthCalorieCam” (new system) which is a food

calorie estimation system exploiting iPhone stereo

cameras.

(5) Rice grain based size estimation (new method)

which uses rice grained the size of which are usu-

ally almost the same as a reference object.

2 CalorieCam

“CalorieCam” [1] is an image-based calorie estimation

system which estimate food calories automatically by sim-

ply taking a food photo from the top with a pre-registered

reference object. Taking into account usability and mobility

of a system, we implemented the system as a stand-alone

mobile application running on a normal Android smart-

phone.

To estimate food calorie from a single image, a user

needs to register a size-known reference object in advance

and to take a food photo with the registered reference object.

As a reference object, we assume a personal belonging

which we are always carrying such as a wallet and a credit-

card-size card in a wallet (except a smartphone for taking

a meal photo). After taking a meal photo with a reference

object, the system carries out segmentation of food items

and the pre-registered reference object. Because the real

size of the reference object is known (e.g. In case of a

credit-card-size object, the size is 85.6mm x 54mm.), the

system can estimate the real size of each detected food items

by comparing the number of pixels of the reference objects

and the detected food items. By using the estimated real size

and the equations to calculate food calorie from their size,

the system finally estimates the calorie of the food items in

the real photo. Figure 1 shows an example of usage and a

screen-shot of the proposed system.
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Figure 1. (Upper) A user taking a food photo
with the reference object. (Lower) A screen-
shot.

To extract regions of food items and a reference object,

firstly we estimate rough position of dishes based on edge

detection results, and secondly we apply color-pixel-based

k-means clustering for estimating bounding box of food

regions. Finally we apply GrabCut [4] with the detected

bounding box as a segmentation seed. For food classifica-

tion, we use a Convolutional Neural Network (CNN) based

recognition engine which run on a consumer smartphone [5]

with high accuracy. It takes only 0.2 seconds on a consumer

Android phone.

3 Weakly-supervised Segmentation Based
Calorie Estimation

In the previous work, we assumed that one meal photo

contains only one dish. This means we have to recognize

dishes one by one for the case of multiple dishes. Then, in

this work [2], we introduced CNN-based region proposal to

cope with multiple-dish meals. We estimate calories from

segmentation results by taking account of area ratios of mul-

tiple foods. With our method, we can estimate food calories

for a photo without multiple-view photos and specific refer-

ence objects such as wallets and cards.

The proposed method on CNN-based region detection

consists of the following steps as shown in Fig.2:

• Apply selective search [6] and obtain 2000 bounding

box proposals at most.

• Group them and select bounding boxes.

• Perform back propagation over the pre-trained CNN

regarding all the selected bounding boxes.

• Obtain saliency maps by averaging BP outputs

within each group.

Figure 2. The processing flow of the proposed
method.

• Extract segments based on the saliency maps with

GrabCut [4].

• Apply non-maximum suppression (NMS) to obtain

final region results.

After region segmentation, we choose a base food region

the real size of which is expected to the same as the standard

dish in the database from the segmentation results of multi-

ple foods. We do not fix the category of a base food so that

there are a lot of pattern in food combination. Therefore,

we define the priorities of food items for choosing a base

food class. We decide the priorities based on a tendency

of unchanging food volumes. Some food volumes change

frequently, while some foods volume rarely change. For

example, in “Teishoku” which is Japanese traditional food

combo menu, we can often change the volume of “rice” as

options, while we cannot change “miso-soup” volume in

general. In this case, “miso-soup” is more appropriate for a

base food. In this way, there are difference in tendency of

unchanging food volumes and we defined food ranking the

volume of which are relatively stable as a high priority class

for choosing a base food class. After selecting a base food

the actual size and calorie is assumed to be known, we cal-

culate calories of other dishes than the dish of the base food

by comparing the number of pixels between each dishes and

the dishes of the base food taking account of calorie densi-

ties which depends on food categories.

Fig.3 shows some examples of calorie estimation results.

4 AR DeepCalorieCam

The previous two method assumed to use only a single

photo for estimating food calories. Being different from

them, “AR DeepCalorieCam V2” [3] uses an inertial sensor

built in a standard smartphone in addition to photos.

The iOS ARKit library contains a function of visual in-

ertial odometory which can estimate a real size of objects
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Figure 3. Examples for results of calorie esti-
mation on UEC-FOOD100.

in the scene. By taking advantage of it, we can directly get

to know the real size of foods without size-known reference

objects.

The system outline is as shown in Figure 4. The process-

ing of the proposed system consists of the following two

steps:

• Recognize a category of each food item.

• Directly calculate the size of the region of the food

item of food items using AR, and then calculate food

calories based on their actual size and the calorie

estimation curves defined depending on food cate-

gories.

We assume that the height of food portion correlates with

the size of foods and food categories, and we estimate calo-

ries of food items directly from the food sizes estimated

from the top-view image. To do that, we use not simple

linear estimation but quadratic curve estimation from the

2D size of foods to their calories. The quadratic curve of

each food category is estimated based on the training data

annotated with real food calories independently. We use a

quadratic curve estimation from the 2D size of foods to their

calories. In the case of the proposed method, we can calcu-

late the real size of foods area directly using AR technology

on mobile devices such as iPhone. Therefore, the reference

object, which was conventionally necessary to obtain the ac-

tual meal area, became unnecessary. By using Apple ARKit

framework, we can measure the actual size of the meal area

Figure 4. AR DeepCalorieCam V2.

by acquiring the coordinates on the real world as a three-

dimensional vector and then calculate food calories based

on their actual size and food categories.

5 DepthCalorieCam

The recent iPhones including iPhone 7s Plus/8s

Plus/X/XS/XS Max have two cameras on the backside,

which can be used as stereo cameras. The latest iOS has

a function on real-time depth image acquisition by using

two backside cameras as stereo cameras. Since the baseline

distance of two backside cameras are known, based on tri-

angulation we can get to know actual sizes of objects in the

depth image.

We implemented a new application running on iPhone

having two backside cameras for food calorie estimation,

“DepthCalorieCam”. Figure 5 shows acquired RGB and

depth images and the results of calories estimation by

DepthCalorieCam.

The processing flow is as follows:

1. Food regions are extracted by U-NET [7] trained with

UECFood-100 [8] and segmentation mask sets.

2. Estimate the depth of each of the pixels corresponding

to food regions and their actual volumes.

3. Calculate food calories from the actual volume and the

regression curves associating with volumes and calo-

ries.

5.1 CNN-based food region segmentation

We used U-Net [7] for food region segmentation. For

training of U-Net, we used the newly-created 5,301 seg-

mentation masks on the images of UECFOOD-100 [8]. In

our previous work, we adopted weakly-supervised food re-

gion segmentation, because we have no segmentation mask
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An obtained RGB
image.

An obtained depth
image.

Estimated result
with calorie intake
and segmented

food region.

Figure 5. DepthCalorieCam.

dataset for food image. This caused low performance of

segmentation-based methods. Then, we annotated segmen-

tation masks for about half of the images of UECFOOD-

100 [8] for training of food segmentation CNN. As a re-

sults, the performance of food region segmentation has been

much improved. In case of using 4771 for training and

530 for testing, the mIoU (mean Intersecting over Union)

of test samples was 0.800. The examples of segmentation

results by GrabCut [4] used in CalorieCam and U-Net used

in DepthCalorieCam are shown in Figure 6.

5.2 Comparative Experiments with CalorieCam
and AR DeepCalorieCam V2

In this experiments, we made use studies for comparing

the proposed DepthCalorieCam with two previous works:

CalorieCam [1] and AR DeepCalorieCam V2 [3]. In the

experiments, we used three kinds of foods the images of

which are shown in Figure 7 and the calories of which are

shown in Table 1.

Three subjectives estimated calorie values of all the

three foods with three systems, CalorieCam, AR DeepCalo-

rieCam V2, and DepthCalorieCam five times with each of

the conditions. Table 2 shows the average error and standard

deviation. From these results, apparently DepthCalorieCam

has improved accuracy of food calorie estimation greatly

over two previous systems.

6 Rice grain based size estimation

In this work, we propose CNN-based real size estimation

from boiled rice grains images. We use grains of boiled rice

(a) (b) (c)

Figure 6. Segmentation results. (a) input im-
ages. (b) results by GrabCut (c) results by
U-Net.

Pork with sweet

and sour source.

Fried chicken. Croquette.

Figure 7. The foods used for the experiments.

as a reference object and construct a CNN-based method

that input a patch image of boiled rice grains images and

output real size of a side of an input patch image. Figure 8

shows examples of real size annotated boiled rice photos,

and Figure 9 shows the architecture of our network.

The architecture of our network is based on VGG16 [9].

As shown in the Figure 9, it has an output layer composed

of a single unit that outputs a real size. An input image is

a patch image cropped from boiled rice grains image and

the output is a real size of a side of the input patch image.

In this work, since the input patch image is 244×244, the

output the real size for 224 pixels.

The real size estimation is treated as a regression prob-

lem. Generally, in the regression problem, a mean square

error is used as the loss function. In this work, we use the

mean square error shown in the Equation (1).

L =
1

n

n∑

k=1

(xk − yk)
2 (1)

6.1 Dataset

In this work, we construct a real size annotated boiled

rice photo dataset for training and evaluation of our
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Table 1. The real calorie values of three foods
used for the experiments.

category calorie [kcal]

pork with source 500

fried chicken 655

croquette 246

Table 2. Comparison on calorie estimation er-
ror (Avg.±SD [kcal]) among CalorieCam [1],
AR CalorieCam V2 [3] and DepthCalorieCam.

category CalorieCam AR CalorieCam DepthCalorieCam

pork with source 364±552 -112±163 2±52

fried chicken -123±171 343±51 -5±64

croquette -48±16 -104±12 -35±22

Figure 8. Examples of real size annotated rice
photos.

network. We prepare 2 types of camera (COOLPIX

AW120, iPhone8 Plus) and 3 amount of water for boiling

rice (180ml/150g, 200ml/150g, 220ml/150g). In addition, a

distance between camera and rice is changed for each im-

age and shape of rice is also changed for every five images.

Since 60 images are taken for each combination of 2 cam-

eras and 3 amount of water, a total of 360 images are col-

lected. Figure 10 shows the collected boiled rice images.

All images are annotated a real size per pixel based on a di-

ameter of a dish and a segmentation mask of boiled rice for

delete background. Figure 8 shows boiled rice images with

an annotated segmentation mask.

6.2 Experiments

In this experiment, we estimate a real size from boiled

rice grains image. We split the built dataset into 6 for the

combination of 2 cameras and 3 amount of water, and one

is used for evaluation and the rest is used for training, so we

Figure 9. Our network that estimate a real size
from boiled rice grains images.

Figure 10. Examples of boiled rice images
with an segmentation mask.

conduct experiments for 6 combinations of train data and

evaluation. For each experiment, 300 images are used for

training and 60 images for evaluation in the built dataset.

For training of our network, an input patch image are

cropped from a random position of a boiled rice grains im-

age and the output is a real size of a side of the input patch

image. On the other hand, for evaluation of our network, 16

patch images are cropped from a boiled rice grains image

by 4 × 4 grid sampling and output is the average value of

the output real size of these patch images. For both training

and evaluation, input patch images where the background

region occupies more than 50% are eliminated. Figure 11

and Figure 12 shows the input patch images in training and

evaluation respectively.

The architecture of our network is based on VGG16 [9]

and initially, each layer contained in the original VGG16 is

pre-trained by ImageNet dataset. For optimization of our

network, we used Momentum SGD with the learning rate

10−5 for about 1,900 iterations, and the size of mini-batch

was 16.

In the evaluation, we show the average of the relative er-

ror representing the ratio between the estimated values and

ground-truth, and the absolute error representing the differ-
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Table 3. The results of the real size estimation from boiled rice grains images.

Evaluation data. abs. err.(cm/224pixels) rel. err.(%) corr. ≤ 5% err.(%) ≤ 10% err.(%) ≤ 20% err.(%)

Camera:COOLPIX, Small amount of water 0.212 7.182 0.958 41.667 75.000 91.667

Camera:COOLPIX, Medium amount of water 0.178 6.550 0.973 43.333 76.667 93.333

Camera:COOLPIX, Large amount of water 0.197 6.668 0.962 48.333 78.333 90.000

Camera:iPhone8 Plus, Small amount of water 0.127 5.652 0.945 50.000 75.000 98.333

Camera:iPhone8 Plus, Medium amount of water 0.170 7.512 0.903 43.333 68.333 88.333

Camera:iPnone8 Plus, Large amount of water 0.105 4.800 0.967 58.333 88.333 98.333

Figure 11. Input patch images of a batch in
training. 16 patch images are cropped from
16 boiled rice grains images respectively.
Background patch images are eliminated.

Figure 12. Input patch images of a batch in
evaluation. 16 patch images are cropped
from one boiled rice grains images by 4 × 4
grid sampling. Background patch images are
eliminated.

ences between both. In addition, we show the correlation

coefficient between the estimated value and ground-truth

and the ratio of the estimated value within the relative er-

ror of 5%, 10%, and 20%. Note that the evaluations are

calculated for the estimated real size of 224 pixels.

Table 3 shows the results of the real size estimation. The

average value of absolute error and relative error for the es-

timated real size for 224 pixels are 0.165cm and 6.394% re-

spectively, and the average correlation coefficient is 0.951.

Table 3 shows the relative errors of all evaluation data are

less than 10% and correlation coefficients are more than 0.9,

and most of the relative error is less than 20%.

In the work on rice grained size estimation, we construct

CNN-based real size estimation from boiled rice grains im-

ages based on the size of grains of boiled rice and as a result,

the correlation coefficient is more than 0.9. As future work,

we plan to estimate food calories from food images consid-

ering 2D size of foods by combining our real size estimation

and food segmentation.

7 Conclusion

In this paper, we reviewed our three previous works and

proposed two new works. Currently, DepthCalorieCam is

the most promising approach. However, large-scale calorie-

annotated 3D food volume data is needed to extend the sys-

tem into large-scale categories, which is very costly and

time-consuming. In addition, the rice grain based method

is also promising for meals containing white steamed rice.

Especially it is appropriate for Japanese foods.
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